Syllabus

Ternopil Ivan Puluj National Technical University

Каф. інжинірингу машинобудівних технологій

Mathematical Modelling of Technological Processes

syllabus

1. Educational programs for which discipline is mandatory:

# Educational stage Broad field Major Educational program Course(s) Semester(s)
1 master's 13. Механічна інженерія 131. Прикладна механіка (магістр) 5 9

2. The course is offered as elective for all levels of higher education and all educational programs.

3. Information about the author of the course

Full name Pankiv Maria
Academic degree PhD
Academic title Assoc. Prof.
Link to the teacher`s page on the official website of the department
Е-mail (in the domain tntu.edu.ua)

4. Information about the course

Study hours structure Lectures: 28
Practical classes: 0
Laboratory classes: 14

Amount of hours for individual work: 78
ECTS credits: 4,5
Teaching language english
Form of final examination exam
Link to an electronic course on the e-learning platform of the university https://dl.tntu.edu.ua/bounce.php?course=5413

5. Program of discipline

Description of academic discipline, its goals, subject of study and learning outcomes

The purpose of discipline is to give the theoretical basis of mathematical modeling of technological processes and improvement of the practical engineering level of future engineers by mastering the theoretical knowledge and practical skills on general methods and techniques of mathematical modeling of technological processes in mechanical engineering using modern computer programs.

The place of academic discipline in the structural and logical scheme of study according to the educational program

Prerequisites. List of disciplines, or knowledge and skills, possession of which students needed (training requirements) for successful discipline assimilation

Theoretical foundations of mechanical engineering

Contents of the academic discipline

Lectures (titles/topics)

Mathematical modeling of power interaction in the cutting zone during parts manufacturing on the machine tools.
Mathematical modeling of elastic deformations in the technological system.
Mathematical modeling of machining precision of parts on machine tools.
Mathematical modeling of productivity control, cost and accuracy of parts processing on metal cutting machines
Volume planning of technological machine tools work.
Basics of the mass service theory.
Mathematical models of the simplest mass service systems.
Fundamentals of the productivity theory and reliability of automatic and automated machine systems.
Productivity and reliability of automatic and automated machine tools.
Operational - scheduling in technological systems based on the theory of schedules.

Laboratory classes (topics)

Investigation of power characteristics during turning cutting.
Investigation of power characteristics during drilling.
Investigation of the milling process with cylindrical mills.
Investigation of the milling process with end mills.
Investigation of heat exchange during cutting.
Investigation of the process of round cut grinding.

Learning materials and resources

1. Петраков Ю.В. Лабораторно-комп`ютерний практикум з теорії різання: Навчальний посібник для студентів, що навчаються за напрямом «Інженерна механіка». – Київ: Політехніка, 2006. –с.190
Basic
1. Зелінський А.М. Основи математичного моделювання: Навч. Посібник. – К.: НВК ВО, 1992.-220с.
2. “Системи автоматизованого проектування” в 9-ти кн..(Кн. 4,6,8,9)/Под ред Норенкова. – Висш. Шк.; 1986.
3. Справочник технолога машиностроителя. В 2-х томах. Т1/ Под ред. А.Г.Касиловой і Р.К.Мещерякова. – М.: Машиностроение, 1985.
4. Петров І.І. Системы автоматизированного проектирования: Учебник для вузов. – М.: Машиностроение 1988. – 352с.
5. Ишуткин В.И. Технологическая надёжность системи СПИД. М.: Машиностроение, 1973. – 128с.
6. САПР технологических процессов приспособлений и режущих инструментов./ Под ред. С.Н. Корчака.: М. Машиностроение, 1988. – 352с.
7. Peterson, J.L., Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.
8. Harris, J., Stocker, H., Handbook of Mathematics and Computational Science, Springer, 1998.
9. Christofides, N., Graph Theory: An Algorithmic Approach, Academic Press, 1975 [13] Bunday, B.D., Basic Linear Programming, Edward Arnold, 1984.
10. Gill, P.E., Murray, W., Wright, M.H., Practical Optimization, Academic Press, 1981

6. Policies and assessment process of the academic discipline

Assessment methods and rating system of learning results assessment

The assessment is carried out according to the credit-module system


Table of assessment scores:

Assessment scale
VNZ
(100 points)
National
(4 points)
ECTS
90-100 Excellent А
82-89 Good B
75-81 C
67-74 Fair D
60-66 E
35-59 Poor FX
1-34 F
Approved by the department
(protocol №
on «
»
y.).